こんにちは!個別指導グノリンクの『小学生の君に送る60秒コラム』を読んでくれてありがとう。 

 今回は算数の「数の性質」の約数や倍数についてです。
 約数や倍数の問題がうまくできない原因には様々なケースがあります。

 「5で割ると2余る数で2けたの最も小さい数を求めなさい」

 という問題で解けない原因は、
 ①数の性質の根本を理解していない(何となく5+2=7の倍数と思っている)
 ②倍数か約数の問題かわからない
 ③日本語力が不足している
 などが考えられます。

 ①の場合、7は5で割ると2余る数なのですが、7×2=14がそうではないことをわかっていません。7は5+2なので7を2倍してしまうと余りも一緒に2倍してしまうので余りが4になってしまい条件に合わないことを教えると納得してくれることが多いです。

 ②の場合、問題文を記号などを使って式にできないことが原因です。ただ今回はわからないことが2つあるので、いくつかの記号を使ってもいいことをまず伝えます。XやYを使ってもよいですが、まだ4、5年生であれば□や△を使う方がなじみがあるので使い易いと思います。
 □÷5=△あまり2
と書かせ、□を求める式を作ります。
 □=5×△+2
こうすれば、□(ある数)は5の倍数に2を加えた数というように倍数の問題であることがわかります。

 ③の場合、抽象的に言われると何を何で割るかが分からなかったり、日本語の語順を変えるだけでわかったりする場合です。
 12を5で割ると言われると12÷5とできるが、いきなり5で割ると言われると混乱するときは、問題文を「ある数を5で割ると2あまる数は」と言い変えてあげて、ある数÷5と出てくればまだだいじょうぶです。問題文に出てくる順番に式を作る変な癖がついているとこのようなことが起きますので、語順がいつも一緒とは限らないことを伝えてあげましょう。ただ、12を5で割るという場合に、12÷5なのか5÷12なのかで悩む場合は割り算そのものがわかっていないので、このケースは少々時間がかかります。

原因を探ってひとつひとつ丁寧に対策しましょう。